Pro	gram	B.Sc. (Hons) Agriculture (Major: Soil Science)	Course Code	SS-402	Credit Hours	3(3-0)		
Cour	Course Title APPLIED MATHEMATICS FOR SOIL SCIENCE							
Course Introduction								
This course enables students to learn the application of mathematics in soil science by								
numer	numerically handling various assignments and calculations of significant importance.							
	Learning Outcomes							
Upon o	Upon completion of the course, students will:							
1.	1. Understand and apply exponential notation and logarithms in soil science contexts.							
2.	Perform of	calculations involving	significant figu	res in vario	us operations.			
3.	Convert units and measure concentrations accurately.							
4.	Determine oxidation states or numbers in soil chemical reactions.							
5.	Apply kinetics principles, including Michaelis-Menten kinetics, to soil processes.							
6.	Use isotope data for radioactive and stable isotope calculations.							
7.	Conduct microbial calculations for growth, yield coefficients, and mortality rates.							
8.	Calculate mineralization and immobilization rates in soils.							
9.	Convert and calculate fertilizer applications.							
10.	Utilize the universal soil loss equation to predict soil loss.							
11.	Perform waste management calculations, including C/N ratio, BOD, and bioremediation.							
12.	Design sampling schemes and estimate the number of samples required.							
13.	Calculate infiltration and runoff using ion sorption and decay models.							
14.	Develop mathematical models for pollutants.							
15.	15. Present data graphically, including one, two, and three-variable presentations.							
Course Content (Theory)								
Week	Unit	Topics		Assi	gnments/Readings	6		

1	Unit 1	Exponential notation	Review on exponential functions
			from recommended textbooks.
2	Unit 2	Logarithms	Assignment on solving
			logarithmic equations.
3	Unit 3	Significant Figures: Counting,	Exercises on significant figures in
		multiplication, addition, subtraction	different operations.
4	Unit 4	Measures of Concentration: Unit conversion	Conversion exercises and practice problems.
			problems.
5	Unit 5 Oxidation state or number		Case studies on oxidation-
			reduction reactions in soil.
6	Unit 6 Kinetics: Km value (Michaelis-Menten		Problems on reaction kinetics in
		Kinetics): First order, Second order	soil systems.
7		Isotopes: Radioactive and Stable	Assignment on isotope usage in
			soil science.
8	Unit 7	Microbial Calculations: Ideal bacterial	
		growth, maximum growth rate, yield	
		coefficients, mortality rates, serial	
		dilution, selection plating, most	
	probable number, direct count calculation		
		calculation	
9		Practical exercises on microbial growth	
		calculations	
10	Unit 8	Mineralization and immobilization rate	Review of nutrient cycling
			processes.
11		Fertilizer conversions: calculating	Problems on fertilizer
		fertilizer applications	calculations for different crops.
12	Unit 9	Components of universal soil loss	Exercises on soil loss prediction
	equation: Predicting soil loss, erodibility		using USLE.
		index	
13	Unit	Waste management: C/N ratio and	
	10	composting, biochemical oxygen	
		demand (BOD), bioremediation,	

		calculating waste loading, rates for gasoline spills					
14		Case studies on waste management in agriculture					
15	UnitSampling Schemes: compositing11samples, estimating the number of samples to take		Practical problems on sampling design and estimation.				
16	Unit	Calculation of infiltration and runoff:	Final review and summary report				
10	12	ion sorption and decay models	on infiltration and runoff calculations.				
Textbooks and Reading Material							
16.	Jury, W.A. and R. Horton. 2004. <i>Soil Physics</i> . 6th Ed. Academic Press. John Wiley and Sons, Inc., Hoboken, NJ, USA.						
17.	Kreysig, E. 2000. Advanced Engineering Mathematics. 8th Ed. John Wiley and Sons, NY, USA.						
18.	Scott, H.D. 1998. <i>Applied Mathematical Methods in Life Sciences</i> . Univ. Arkansas Press, Fatteville, AR, USA.						
19.	Coyne, M.S. and J.A. Thompson. 2006. <i>Math for Soil Scientists</i> . Clifton Park, N.Y: Thomson/Delmar Learning.						